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Abstract—High-quality mammography is the most effective
technology presently available for breast cancer screening. High
resolution mammograms usually lead to more accurate diag-
noses; however, they require large doses of radiation, which may
have harmful effects. In this paper, we present a method to syn-
thesize high-resolution mammograms from low-resolution inputs,
which offers the potential of allowing accurate diagnoses while
minimizing risks to patients. Our algorithm combines statistical
machine learning methods and stochastic search to learn the
mapping from low-resolution to high-resolution mammograms
using a large dataset of training image pairs. Experimental results
show that the super-resolution algorithm can generate high-
quality, high-resolution breast mammograms from low-resolution
input with no human intervention.

I. INTRODUCTION

Breast cancer causes more deaths than any other type of
cancer for females worldwide. However, if breast cancer can
be detected early, the five-year survival rate increases consider-
ably [1]. High-quality mammography, which consists of using
X-rays to examine the human breast, is the most effective
technology presently available for breast cancer screening.

The quality of diagnoses depends on the resolution of the
mammograms, among other factors, with higher resolutions
providing a higher level of detail that normally leads to
improved accuracy. However, to obtain higher resolutions,
larger doses of radiation are necessary, which may have
harmful effects for patients. To alleviate this problem, some
work has been done attempting to increase the resolution of
mammograms without a corresponding increase in radiation.
Robinson et al. [2] used multi-frame image reconstruction
to produce high-resolution mammograms beyond the native
resolution of a digital image sensor by way of accurate
sub-pixel registration of aliased images. Several other image
enhancement techniques have been proposed for this problem
[3], [4], [5], [6], [7], [8]; however, improvements have been
modest.

Recent research at the intersection of computer vision and
computer graphics has produced methods for automatically
increasing the resolution of images of specific classes, com-
monly faces [9], [10]. These methods use statistical machine
learning techniques to learn the function that maps low res-
olution images to their high resolution counterparts, for a
particular class of images. Efforts to date in this line of work
have focused on face images; one of the goals of this work is
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to investigate whether these methods can be extended to other
domains, particularly medical image processing.

In this paper, we present an end-to-end method to synthesize
a high-resolution (HR) mammogram given a low-resolution
(LR) one as input. Our method receives as input low-resolution
mammograms, which can be generated with low doses of X-
ray radiation. Then these images are automatically registered
and aligned using a mesh warping algorithm. Finally, a two-
step super-resolution algorithm is applied, which integrates
a PCA-based global model and a patch-based local model,
to generate the high-resolution images. The experimental re-
sults show that the algorithm can generate high-quality high-
resolution breast mammograms from low-resolution input with
no manual registration.

II. RELATED WORK

Existing methods for image super-resolution can be di-
vided into two categories: multiple-frame super-resolution
and single-frame super-resolution. In multiple-frame super-
resolution, the LR frames typically depict the same scene.
This means that LR frames are distorted as well as shifted
with subpixel precision. If the LR frames contain different
subpixel shifts, then the new information contained in each
LR frame can be used to construct an HR frame. Through
motion analysis from frame to frame, a super-resolution image
can be inferred by combining these LR frames with subpixel
accuracy [11].

Single-frame super-resolution aims to estimate missing
high-resolution details from a single input low-resolution
image. The problems under this category can be generic
or object-specific. Generic image super-resolution techniques,
such as interpolation, band-pass filtering, unsharp masking,
and several others, can be applied to any images. However,
they usually result in blurring of sharp edges, introduction
of blocking artifacts, inability to generate high frequency
components or fine details of semantically important structures
[12], [13], [14], [15].

Object-specific super-resolution assumes that only images
of a certain type are input. Most approaches to object-specific
super-resolution use machine learning algorithms to find the
function that maps low-resolution to high-resolution images
of a given class. This enables them to infer the most likely
high-resolution image depicting the same object as a low-
resolution image given as input. When applied to face images,
this process is known as face hallucination, first proposed by
Baker and Kanade [16], [9], and has been an active research
area for the last decade [17], [18], [14], [19], [20], [21], [10],
[22].
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Because of the benefits of image super-resolution, several
methods have also been proposed for the purpose of medical
image super-resolution. Irani et al. [3] proposed an iterative
algorithm together with a method for image registration with
subpixel accuracy to increase image resolution. The approach
is similar to reconstruction of a 2-D object from its 1-D
projections in computer aided tomography (CAT). Images
are reconstructed from their projections in many directions
in tomography, while in super-resolution, each low-resolution
pixel is a projection of a region in the scene whose size is
determined by the imaging blur. The high-resolution image
is then constructed using an approach similar to the back-
projection method used in CAT.

Based on Irani’s work, Greenspan et al. [4] applied the iter-
ative super-resolution algorithm to construct high-resolution
magnetic resonance images (MRI). MRI slice thickness is
determined by hardware limitations and pulse sequence timing
considerations. Thus the in-plane resolution is higher than
the resolution of the slice-select direction. They addressed
the challenge of achieving HR isotropic 3-D MRI images by
merging several sets of 2-D slices in slice-select direction.

Kennedy et al. [5], [6] successfully applied Irani’s itera-
tive super-resolution algorithm to construct positron emission
tomographies (PET). PET resolution is limited by physical
parameters such as scatter, counting statistics, positron range
and patient motion, detector array geometry, and the im-
plemented acquisition protocol. They demonstrated how an
iterative super-resolution algorithm can be implemented to
improve PET resolution using shifts and rotations in the
transaxial plane as well as along the axial direction.

Hsu et al. [23] proposed a wavelet-based projection-onto-
convex-set super-resolution reconstruction algorithm to en-
hance spatial resolution of MRI heart images from a temporal
sequence. This approach makes use of the non-stationary effect
in the successive images in the sequence to extract information
for image reconstruction at a higher spatial resolution.

Lettington and Hong [24] proposed an efficient algorithm
to reduce the ringing artifacts that arise from the use of the
unconstrained Poisson maximum a posteriori (MAP). They
use a Lorentzian probability function to model the image by
studying the distribution of its edge values, then introduced
a correction term to increase the image likelihood using
mean square error (MSE) criterion. The correction term is
effective in reducing the ringing artifacts while maintaining
the sharpness of the image.

Kanemura et al. addressed the hyperparameter estimation
problem in Bayesian image superresolution with a compound
Gaussian Markov random field (MRF) prior [7]. They esti-
mated all the hyperparameters, the registration parameters, and
the HR image by means of minimizing variational free energy
under the assumption of a factorized posterior.

Nguyen et al. [25] presented a new and efficient wavelet-
based algorithm for image super-resolution that is a combina-
tion of interpolation and restoration processes and exploits the
interlaced sampling structure in the low resolution data.

III. SUPER-RESOLUTION ALGORITHM

In this work we propose a mammogram super-resolution
algorithm that can generate high-quality high-resolution im-
ages from low-resolution input with no manual registration.
The proposed algorithm consists of four main steps. The first
step automatically aligns the parts of the images containing
the breasts to a standardized position. The second step uses
eigentransformation to infer global models, that is, the low-
frequency components of the target image. Principal Compo-
nent Analysis (PCA) is used to fit the input images as a linear
combination of the low resolution images in the training set.
The HR images are then inferred by replacing the LR training
images with HR ones, while retaining the same combination
coefficients. In the third step, a patch-based one-pass algorithm
captures high-frequency contents of the HR images. The fourth
step re-maps the breasts back to their original position.

A. Automatic Alignment

Image alignment is a key step for the success of the algo-
rithm. In practice, we cannot assume that any low-resolution
mammogram has been accurately aligned, although the ap-
proximate position of the breasts is given by mammography
sensors. Therefore, in preprocessing, we automatically align
the breast cancer mammograms to make sure all breasts are
in exactly the same position, and then do the super-resolution.
The automatic alignment process consists of two parts, 2-pass
mesh warping [26] and segmentation-based initialization.

The 2-pass mesh warping algorithm accepts a source image
and two 2-D arrays of coordinates. The first array, S, specifies
the coordinates of control points in the source image, and the
second array, D, specifies their corresponding positions in the
destination image. The first pass is responsible for resampling
each row independently. It maps all (u, v) points to their
(x, v) coordinates in the intermediate image I , in which the
x-coordinates are the same as those in D, and y-coordinates
are same as those in S.

For each pixel P in intermediate image I , the value of P
is evaluated as a weighted sum from x0 to x1, the left most
and rightmost positions in S that are the projections of the left
and right integer-valued boundaries of P

P =

∑x1

x=x0
kxSx

x1 − x0
where kx is the scale factor of source pixel Sx, and the

subscript x denotes the index that lies between bx0c and dx1e.
The scale factor kx is defined as

kx =

 dxe − x0 if bxc < x0
1 if x0 ≤ x < x1
x1 − bxc if dxe > x1

The second pass then resamples each column in I , mapping
every (x, v) point to its final (x, y) position, which is virtually
identical to that of the first pass. We just need to substitute
(x, v) for (u, v), and substitute (x, y) for (x, v) [26].

The key to apply 2-pass mesh warping is to build the 2-D
arrays of coordinates. We use segmentation-based initialization
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to build the 2-D arrays of coordinates automatically. The
initialization for 2-pass mesh warping consists of the following
steps (Figure 1):

1) Convert the input image to binary image.
2) Apply erosion to remove the labels in the binary image.
3) Convert the binary image to gradient image to find the

edge.
4) Use skeletonization to reduce the edge to a single line.
5) Distribute points uniformly on each side of the line to

generate mesh for 2-pass mesh warping.

B. Global Modeling

In global modeling we use an algorithm called eigentrans-
formation, which was originally introduced by Wang and Tang
[22]. The eigentransformation is a simple and powerful tech-
nique for image enhancement based on principal component
analysis (PCA). It assumes that we have a training set of pairs
of images 〈(L1, H1), . . . , (Ln, Hn)〉, where each pair (Li, Hi)
contains a low resolution image Li and its corresponding high-
resolution counterpart Hi.

The eigentransformation allows any image L to be repre-
sented as a linear combination of images in the training set
L1, ..., Ln. When given a low resolution image, it finds the
vector of coefficients [c1, . . . , cn] so that

L = Σn
i=1ciLi + µL

where µL is the mean low-resolution image.
Given the vector [c1, . . . , cn], the approximate high resolu-

tion image H can be computed by

H = Σn
i=1ciHi + µH

where µH is the mean high-resolution image.
Because the coefficients are not computed from the HR

training data, some noise-like distortion may be introduced.
To reduce the distortion, we apply constraints by bounding the
projection onto each eigenvector by its corresponding eigen-
value, then the synthesized image is reconstructed from these
constrained coefficients. The high resolution image obtained in
this manner is called the global model, since it approximates
the global properties of the target high-resolution image.

C. Local Modeling

Given a global model, to construct the corresponding local
model, we first filter the global model with a Gaussian high-
pass filter, and then subdivide the filtered global model into
patches, which we call the low-frequency patches of the
high-resolution (HR) images, by scanning a window across
the image in raster-scan order. Similarly, we also filter and
subdivide the HR images in the training set into patches that
we call high-frequency patches of the training HR images.

To construct a local model, for each low-frequency patch, a
high-frequency patch of the training HR image is selected by
a nearest neighbor search from the training set based on local
low-frequency details and adjacent HR patches previously
determined. The selected high-frequency patch should not only

come from a location in the training images that has a similar
corresponding low-frequency appearance, but also agree with
the overlapping pixels, which we call high-frequency overlap,
at the edges of its previously determined high-frequency
neighbors. This ensures that the high-frequency patches are
compatible with those of the neighboring high-frequency
patches.

In this work we compute the local model with an algorithm
similar to Freeman’s one-pass algorithm [18][14]. We first
concatenate the pixels in the low-frequency patch and the high-
frequency overlap to form a search vector. The training set also
contains a set of such vectors. Then we search for a match by
finding the nearest neighbor in the training set. When we find
a match we extract the corresponding high-frequency patch
from training data set and add it to the initial global model to
obtain the output image.

Mathematically, this process can be described as follows.
Suppose we have a training data set

{(x(i,j,k), y(i,j,k), z(i,j,k)),

i = 1, 2, . . . , l; j = 1, 2, . . . ,m; k = 1, 2, . . . , n}

where x(i,j,k) is the low-frequency patch at the ith row
and jth column of the kth training HR image, y(i,j,k) is
the corresponding high-frequency overlap and z(i,j,k) is the
corresponding high-frequency patch of the training HR image,
l is the number of rows of patches in a training image, m is
the number of columns of patches in a training image and n
is the number of training images.

Given an input LR patch x, we need to find an HR patch
z(i

′,j′,k′) such that

z(i
′,j′,k′) = min

i,j,k
(d(x, x(i,j,k)) + α ∗ (d(y(i,j,k), y

(i,j,k)
N )))

where d(x, y) is the Euclidean distance between x and y,
y
(i,j,k)
N is the overlap of z(i,j,k) with the adjacent, previously

determined high-frequency patches, which are the patches
above and to the left of the current high-frequency patch in
the local model, α is a user-controlled weighting factor, and
z(i

′,j′,k′) is the selected high-frequency patch.

D. Image Quality Measures

In this paper, the quality of a super-resolution image is
defined as the similarity with the original high-resolution
image. We use Peak Signal-to-Noise Ratio (PSNR) and the
Mean Structural Similarity (MSSIM ) index to measure the
quality of super-resolution results. Let X and Y be two images
to be compared, and T be the total number of pixels in
either image. The PSNR, which is most commonly used as
a measure of quality of reconstruction [27], is defined as

PSNR = 20× log10
255

RMSE

where RMSE is the root mean square error between the
two images.
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(a) (b) (c) (d) (e) (f)
Fig. 1. Automatic registration: (a) Original image. (b) Converting the original image to binary image. (c) Using erosion to remove the labels in the binary
image. (d) Converting the binary image to gradient image to find the edge. (e) Using skeletonization to reduce the edge to a single line. (f) Sampling points
on the line and making the mesh.

RMSE(X,Y ) =
√
MSE(X,Y )

=
√
E((X − Y )2)

=

√∑T
i=1(xi − yi)2

T

The structural similarity (SSIM) index [28] is an imple-
mentation of the idea of structural similarity, from an image
formation point of view, which takes into account contrast,
luminance, and structure to determine similarity between two
images. SSIM is defined as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

σxy =
1

T − 1

T∑
i=1

(xi − µx)(yi − µy)

where x and y are subimages of X and Y , µx is the average
of x, µy is the average of y, σx is the standard deviation
of x, σy is the standard deviation of y. C1 = (k1L)2 and
C2 = (k2L)2 are two variables to stabilize the division with
weak denominator, L is the dynamic range of the pixel values
(typically this is 255), k1 = 0.01 and k2 = 0.03 by default.
The mean SSIM (MSSIM) is then simply the mean of the
SSIMs for each subimage. A value of MSSIM of 1 indicates
perfect similarity [28].

IV. EXPERIMENTAL RESULTS

We use DDSM (Digital Database for Screening Mammog-
raphy) for our experiments. DDSM is a standard dataset used
by the mammography image analysis research community. The
database has about 2,500 cases. Each case includes two images
of each breast, along with some associated patient information
and image information.

In this work, 400 normal left mediolateral oblique (MLO)
images from DDSM dataset are used for training and 10
normal left MLO images images for testing. And we use an
automatically built 32× 8 mesh to register the mammograms.

To construct our training dataset, we generate global models
from the training LR mammograms and filter them with a

Gaussian high-pass filter. Then we divide the filtered global
model into low-frequency patches by scanning a 4 × 4 pixel
window across the images in raster-scan order. Then we again
filter and subdivide the training HR mammograms into 4 ×
4 pixel high-frequency patches. At each step we also get a
9-pixel overlap of each high-frequency patch with the high-
frequency patches above and to the left. Then we create our
training vectors by concatenating the low-frequency patches
and corresponding high-frequency overlaps. In practice, the
size of low-frequency patches and high-frequency patches is
not necessarily the same. The parameter α, which controls
the trade-off between matching the low-frequency patches and
finding the most compatible high-frequency patches, is set to
0.2, which gives good HR results in our experiments.

To reduce the effect of background to the quantitative
evaluation of the super-resolution results, we applied a mask to
each image (Figure 3) to get the region of interests (ROI). The
mask is computed automatically using image an segmentation
algorithm. At the same time we removed the labels from the
background.

For each high-resolution image, we downsample it by a
downsample factor of 2,4,8 and 16, and then enhance the low-
resolution image to its original resolution. The experimental
results of different resolutions are reported in figures 2 to 5.
We also measure the quality of super-resolution results using
PSNR and MSSIM (Table I), which are commonly used image
quality measures in most super-resolution studies [27]. The
results indicate that the super-resolution images have much
more high-frequency information than nearest and bilinear
interpolated images.

Comparing the different image quality measures, we can see
that although the PSNR is a meaningful standard image quality
measure [27], it does not necessarily reflect perceived visual
quality by humans [29][28]. In some of the experiments shown
in Table I, the PSNR value of SR by a downsample factor of
4 is 34.02, which is lower than the corresponding PSNR value
of bilinear interpolation, 35.2363. But from Figure 3, we can
see that the SR results have much more detail information
than the results of bilinear interpolation. The MSSIM, which
accounts well for the texture changes introduced by the super-
resolution process, has its values increased by the super-
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resolution algorithm. Since this measure was created to better
reflect perceived visual quality by humans [29][28], this im-
plies that the super-resolution algorithm increases perceptual
quality.

(a) (b) (c) (d)
Fig. 2. Sample super-resolution results with a downsample factor of 2: (a)
Original high-resolution image. (b) Super-resolution image. (c) Interpolated
image. (d) low-resolution image

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a new way to improve the
quality of X-ray images without having to use more radiation,
which increases health risks of patients. The method takes
low-resolution images obtained with low doses of X-ray
radiation, and automatically registers and aligns them using
mesh warping, and then uses super-resolution algorithms to
create high resolution images from the LR input. Our results
show that the super-resolution algorithm can generate accurate
high-resolution breast mammograms from low-resolution input
with no manual registration.

(a) (b) (c) (d)
Fig. 3. Sample super-resolution results with a downsample factor of 4: (a)
Original high-resolution image. (b) Super-resolution image. (c) Interpolated
image. (d) low-resolution image

As medical imaging moves towards complete digital imag-
ing and produces prohibitively large amounts of data, com-
pression is necessary for storage and communication purposes.
Our method has the potential to eliminate the need to store
images at full resolution, since they could be re-generated them
from low-resolution ones. We will explore different trade-off
between compression rates and accuracy, as well as analyze the
interaction between our method and conventional compression
schemes.

Though the SR images have very high-resolution, some
details in the SR images are different from the original images.
We will study whether these differences would affect diagnosis
by applying an automatic breast cancer detection system to the
original images and SR images respectively, and then compare
the detection rates.

To further improve the speed of the super-resolution algo-
rithm, we plan to use stream processing to parallelize the
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(a) (b) (c) (d)
Fig. 4. Sample super-resolution results with a downsample factor of 8: (a)
Original high-resolution image. (b) Super-resolution image. (c) Interpolated
image. (d) low-resolution image

execution. Stream processing permits the execution of data-
parallel algorithms with stream processors such as graphic
processing units (GPUs), while using the central processing
unit (CPU) for other purposes simultaneously. This would
enable a conventional PC to run the image super-resolution
algorithm in real time.

REFERENCES

[1] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer
statistics,” CA Cancer J Clin, vol. 59, no. 4, pp. 225–249, 2009.

[2] M. D. Robinson, S. Farsiu, J. Y. Lo, P. Milanfar, and C. A. Toth, “Ef-
ficient multiframe registration of aliased x-ray images,” in Proceedings
of the 41th Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, November 2007.

[3] M. Irani and S. Peleg, “Improving resolution by image registration,” in
Proceedings of CVGIP: Graphical Models and Image Process, vol. 53,
no. 3, May 1991, pp. 231–239.

[4] H. Greenspan, G. Oz, N. Kiryati, and S. Peled, “Super-resolution in
mri,” in Proceedings of IEEE International Symposium on Biomedical
Imaging, 2002, pp. 943–946.

(a) (b) (c) (d)
Fig. 5. Sample super-resolution results with a downsample factor of 16: (a)
Original high-resolution image. (b) Super-resolution image. (c) Interpolated
image. (d) low-resolution image

[5] J. A. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom, and H. Azhari,
“Super-resolution in pet imaging,” IEEE transactions on medical imag-
ing, vol. 25, no. 2, pp. 137–147, February 2006.

[6] ——, “Improved image fusion in pet/ct using hybrid image reconstruc-
tion and super-resolution,” International Journal of Biomedical Imaging,
2007.

[7] A. Kanemura, S. Maeda, and S. Ishii, “Hyperparameter estimation in
bayesian image superresolution with a compound markov random field
prior,” in IEEE workshop on Machine Learning for Signal Processing,
August 2007, pp. 182–186.

[8] A. Wong and J. Scharcanski, “Phase-adaptive superresolution of mam-
mographic images using complex wavelets,” IEEE transactions on image
processing, vol. 18, no. 5, pp. 1140–1146, May 2009.

[9] S. Baker and T. Kanade, “Limits on super-resolution and how to break
them,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 9, pp. 1167–1183, 2002.

[10] X. Wang and X. Tang, “Face hallucination and recognition,” in Proceed-
ings of the Fourth International Conference on Audio- and Video-Based
Personal Authentication (IAPR), University of Surrey, Guildford, U.K.,
June 2003, pp. 486–494.

[11] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: a technical overview,” Signal Processing Magazine,

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 01,2021 at 03:07:12 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
IMAGE QUALITY MEASURES

Method Downsample factor PSNR MSSIM

Super-resolution

16 35.7403 0.8095
8 34.7535 0.8238
4 34.0200 0.8242
2 33.4649 0.8223

Nearest-neighbor
16 31.5602 0.6164
8 32.9498 0.6690

interpolation 4 34.4359 0.7600
2 36.6833 0.8558

Bilinear
16 32.3788 0.7282
8 33.9344 0.7577

interpolation 4 35.2363 0.8072
2 37.1938 0.8807

IEEE, vol. 20, no. 3, pp. 21–36, May 2003.
[12] C. B. Atkins, C. A. Bouman, and J. P. Allebach, “Optimal image scaling

using pixel classification,” in 2001 International Conference on Image
Processing. Volume, 2001, pp. 864–867.

[13] N. Dodgson, “Quadratic interpolation for image resampling,” IEEE
Transactions on Image Processing, vol. 6, no. 9, pp. 1322–1326,
September 1997.

[14] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-
level vision,” International Journal on Compter Vision, vol. 40, no. 1,
pp. 25–47, 2000.

[15] H. Greenspan, C. Anderson, and S. Akber, “Image enhancement by
nonlinear extrapolation in frequency space,” IEEE Transactions on
Image Processing, vol. 9, no. 6, pp. 1035–1048, June 2000.

[16] S. Baker and T. Kanade, “Hallucinating faces,” in Fourth IEEE In-
ternational Conference on Automatic Face and Gesture Recognition,
Grenoble, France, March 2000.

[17] G. Dedeoǧlu, “Exploiting space-time statistics of videos for face “hallu-
cination”,” Ph.D. dissertation, The Robotics Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, April 2007.

[18] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-
resolution,” IEEE Computer Graphics and Applications, vol. 22, no. 2,
pp. 56–65, 2002.

[19] L. Liang, C. Liu, Y. Xu, B. Guo, and H.-Y. Shum, “Real-time texture
synthesis by patch-based sampling,” ACM Transactions on Graphics,
vol. 20, no. 3, pp. 127–150, July 2001.

[20] C. Liu, H.-Y. Shum, and W. T. Freeman, “Face hallucination: Theory
and practice,” International Journal of Computer Vision (IJCV), vol. 75,
no. 1, pp. 115–134, October 2007.

[21] C. Liu, H.-Y. Shum, and C.-S. Zhang, “A two-step approach to halluci-
nating faces: global parametric model and local nonparametric model,”
in Proceedings of the 2001 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2001), 2001, pp. 192–198.

[22] X. Wang and X. Tang, “Hallucinating face by eigentransformation,”
IEEE Transactions on Systems, Man and Cybernetics, Part C: Appli-
cations and Reviews, vol. 35, no. 3, pp. 425–434, August 2005.

[23] J. T. Hsu1, C. C. Yen, C. C. Li, M. Sun, B. Tian, and M. Kaygusuz,
“Application of wavelet-based pocs superresolution for cardiovascular
mri image enhancement,” in Proceedings of the Third International
Conference on Image and Graphics (ICIG04), 2004, pp. 572–575.

[24] A. H. Lettington and Q. H. Hong, “Ringing artifact reduction for pois-
son map superresolution algorithms,” in IEEE SIGNAL PROCESSING
LETTERS, vol. 2, no. 5, May 1995, pp. 83–84.

[25] M. Nguyen, P. Atkinson, and H. Lewis, “Superresolution mapping using
a hopfield neural network with lidar data,” IEEE Geoscience and Remote
Sensing Letters, vol. 2, no. 3, pp. 366–370, July 2005.

[26] G. Wolberg, Digital Image Warping. IEEE Computer Society Press,
1990, ch. 2-Pass Mesh Warping, pp. 222–240.
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